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Signals, systems, acoustics
and the ear

Loudness &
Temporal resolution



Absolute thresholds & Loudness

Name some ways these concepts
are crucial to audiologists



Sivian & White (1933) JASA

sound source
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Thresholds for different

mammals

threshold (dB SPL)
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Two ways to define a threshold
once determined

e minimum audible field (MAF)

—in terms of the intensity of the sound
field in which the observer's head is
placed

e minimum audible pressure (MAP)

—in terms of the pressure amplitude at
the observer's ear drum

- often used with reference to |
headphones, and even more so, insert
earphones

e MAF includes effect of head, pinna &
ear canal



MAP vs. MAF
Accounting for the difference
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Frequency responses for:

ear-canal entrance near the ear drum
free-field pressure ear-canal entrance

Total Effect:
near the ear drum
free-field pressure
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Determine a threshold for a 2-kHz
sinusoid using a loudspeaker




Now measure the sound level

at ear canal (MAP):
15 dB SPL

at head position without
head (MAF): 0 dB SPL
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Accounting for MAP/MAF

difference
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Accounting for the ‘bowl’

Combine head+pinna+canal+middle ear
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Detection of sinusoids in

F

X

R

cochlea

Threshold

e How big a sinusoid do we have to put into our
system for it to be detectable above some

threshold?

e Main assumption: once cochlear pressure reaches
a particular value, the basilar membrane moves

sufficiently to make the nerves fire.



Detection of sinusoids in

F

X

R

cochlea

Threshold

e A mid frequency sinusoid can be
quite small because the outer and
middle ears amplify the sound



Detection of sinusoids in

cochlea
Threshold
R A /
X = Thb-oooooo—-
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e A low frequency (or high
frequency) sinusoid needs to be
larger because the outer and

middle ears do not amplify those
frequencies so much



Detection of sinusoids in
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e So, if the shape of the threshold curve
is strongly affected by the efficiency of
energy transfer into the cochlea ...

e The threshold curve should look like this
response turned upside-down: like a
bowl.




Use MAP, and ignore contribution of head and
ear canal

o] el ' Much of the
threshold curve
1= can be
accounted for
. by the
efficiency of
energy transfer
into the
cochlea
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What determines how loud a sound is?

e Intensity, certainly but ...
e much else

e Duration
e Temporal integration (up to ~ 250 ms)
e How intensity varies over time

e Context
e |Loudness adaptation (over seconds or mins)

e Frequency content
e Sinusoids as a special case



Loudness of supra-threshold sinusoids
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The Phon scale of loudness

e 'A sound has a loudness of X phons if
it is equally as loud as a sinewave of
X dB SPL at 1kHZ’

e.g. A 62.5Hz sinusoid
at 60dB SPL has a
loudness of 40 phons,
because it is equally as
loud as a 40dB SPL
sinusoid at 1kHz
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Sound pressure level

Equal loudness contours
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Contemporary equal loudness contours
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Perceived loudness is (roughly)

log

arithmically related to pressure
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Temporal resolution



Remember: Modulating a sinusoid
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Remember: Envelope (ENV)
& Temporal Fine Structure (TFS)

0.5

e Any wave can be a original o |
product of an envelope wave

multiplied by a carrier —l
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Temporal resolution ...

e Typically defined as reflectlng perception of
variations over time in .

- envelope
— rather than fine-structure

e But could concern temporal variations, for
example, in:

- frequency of a sinusoid

e heard as changes in pitch
- ITD

e heard as changes in location
— others?



Temporal Resolution for envelope
most often tested in two ways

e Both involve modulation of the amplitude
of waveforms ...
— Gap detection
— Amplitude modulation

e but this almost always results in spectral
changes.

e In other words, you usually cannot change
the temporal (envelope) properties of a
signal without also changing its spectrum

- leading to a difficulty of interpretation unless
special measures are taken



The need to eliminate spectral cues

Modulating signals in envelope usually results in
spectral changes (broadening, known as splatter)
- e.g., effect of 10 ms gap in spectrum of 1 kHz sinusoid

Need to avoid listeners hearing spectral changes
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Three possibilities

e Modulate wideband noise stimuli

e Minimise audibility of spectral changes by

— keeping any sidebands in the same auditory
filter as the original signal — allows use of low
AM rates with sine carriers

— and/or adding masking noise to make spectral
changes inaudible

e Modulate wideband noise stimuli and filter
into bands afterwards

— but can change extent/form of modulation



Gap thresholds

Interval 1 Interval 2

Time —»

e Pick the sound with the gap - vary the
gap duration to find threshold

e Thresholds for wide-band noise are around
3 ms



Effects of noise spectrum on gap
detECthn Wider noise

bandwidth gives
smaller gap
thresholds
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AM detection - TMTF

e TMTF - temporal modulation transfer function

e Analogous to an ordinary transfer function or
frequency response

— dealing with frequencies of modulation rather than
frequencies of a sinusoidal waveform directly

e Analytic approach to temporal resolution
— Considers temporal modulation across different single
frequencies of sinusoidal AM

o cf gap detection where in effect the modulator is a pulse
comprising wide range of modulation frequencies

— As for gap thresholds, wide-band noise is an ideal signal
because of the lack of spectral changes.

- Fixed modulation rate - vary depth of modulation to
determine minimum detectable depth



10 Hz modulation rate
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TMTF data

e Thresholds
expressed in dB as
20 log(m) where m

IS modulation index
-5 - m = 1 gives 0 dB

= (modulation depth =
ot -107 carrier amplitude)
£
R 191 m = 0.05 gives -26 dB
o
% -20 - The function looks very
£ much like a low-pass
= 231 filter (here inverted)
-30 L L B S A R Upper limit of
1 10 100 1000 amplitude modulation
Modulation Frequency (Hz) detection between 500

and 1000 Hz



Fundamentals of Hearing: An Introduction

Amplitude Modulation Detection

Four sets of amplitude modulated noises each of
500-msec duration with modulation rates of 4, 16,
64, and 256 Hz

For each set: ten comparisons of an unmodulated
noise followed by the amplitude modulated noise

The depth of modulation starts at 50% or 20log(m)
= -6 dB and decreases in 5% steps ending at 5%.

Count how many of the ten pairs have a noticeable
modulation compared to the 1st unmodulated noise
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Translating to the clinic:
Auditory Neuropathy Spectrum
Disorder (ANSD)



Temporal resolution in ANSD

e ANSD: normal OAEs but lack of CAP
and ABR responses.

e Sometimes near normal audiometric
thresholds but often severe problems
with speech perception, out of line with
hearing loss in PTA

e Locus of impairment unclear
- not like SNHL
— probably not involving OHCs

e Likely involves disruption of phase-
locking in auditory nerve



Rance, McKay and Grayden, 2004
(Ear & Hearing)

e Compared children with normal
hearing, SNHL, and ANSD

e Measured

- Frequency selectivity (simple notched
noise method)

— Sinusoid frequency discrimination
- TMTFs

- CNC word phoneme recognition



_ (| ; ” S0 He T ; 4 kH= f
?:- m n : fn I _ il
: : £
E“H | ! I T % 3 I
FRLE 3[ - Tasd = L ¥
E ) ‘ | § . : 3 ¥
= 44 |
g . | I |I SRR O Y= P TR " mermal SN ANCM) ANGIEY)
Al AN "-.nmnl I'@
(230%)  (<30%)
SMNR difference for thresholds in wide-band Freguency discrimination thresholds
and notched noise: 1 kHz probe, 500 Hz notch at 500 Hz and 4 kHz
-2 '|
{5 w7} 18 -
=16 -
(#3 #4)
15 7 3 E
—
2 .12 gy o) ==+
= (#1) —F . = -2 2 ’/'6‘]
E” . Impaired £
J . E 9
= 71 wony & modulation £
~ R ! 8 4
P T P k’idetectlon in V= -0.15x-1.37
ot b 5 AN group 3413
i i "'HEE-_'T".H-G - g T _%.1—|_I_Il-ﬂ ﬂ'j 11 ' } i i
. 10 160 1000 0 20 40 60 50 100
Modulation Frequency (Hz) CNC Phoneme Score %

: : . 2 Figure 4. Amplitude modulation detection threshold (10 Hz
Figure 3. Amplitude modulation detection thresholds (AN MF) plotted as a function of CNC phoneme score (AN

subjects). Closed circles represent children in the AN = 30% subjects). The data point for each child is represented by the
group, and open circles represent the children in the AN < subject identification number,

30% group. Open triangles show the findings for children in

the AN < 30% group unable to detect a modulation depth of

0 dB. The enclosed area shows the mean %2 5D range for the

normal-hearing group.



Temporal resolution and temporal
frequency coding seems impaired
in ANSD

e And both correlate highly with
speech scores

e While auditory filtering seems near-
normal in many of the ANSD subjects



A model of temporal resolution -
the temporal window
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FIGURE 5.10 The “shape” of the sliding temporal integrator (window). This is a weighting
function applied to the output of the nonlinear device. It performs a weighted running average
of the output of the nonlinear device. The shape is plotted on a linear scale as a function of
time.



A model of the auditory
periphery

inner temporal window
outer ear middle ear hair cells
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The temporal

Sound T | . .
with Gep  Window window as a kind
of smearing
\ Temporal Excitation Pattern
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slide courtesy of Chris Plack, 2013



gap detection seen through the temporal
window model

8.0 ms gap 4.0 ms gap 20 ms gap 1.0 ms gap 05 ms gap

input envelope

output excitation
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time {ms)



Effects of temporal window on
signals

Input Response
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FIGURE 5.11 Examples of the influence of the sliding temporal integrator on the envelopes of
sounds. The panels on the left show inputs to the sliding temporal integrator. The panels on the
right show the corresponding outputs.

Decision device looks at evidence of level changes at output - a
model of within-channel temporal resolution



Neural synchrony AM detection
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Key Points

Measures of temporal resolution typically
relate to signal envelopes

Measures must control spectral artefacts

Gap detection and TMTF main measures

— Both indicate limits in region of 1 to 3 ms in normal
hearing

Temporal window model can account

reasonably well for within-channel temporal

resolution

— But this model is wrong in many respects! A full
understanding appears to require the concept of a
modulation filterbank




